Watching molecules grow into microtubes

Sometimes the best discoveries come by accident.

A team of researchers at Washington University in St. Louis, headed by Srikanth Singamaneni, PhD, assistant professor of mechanical engineering & materials science, unexpectedly found the mechanism by which tiny single molecules spontaneously grow into centimeter-long microtubes by leaving a dish for a different experiment in the refrigerator.

Self-assembly, a process in which a disordered
collection of components arrange themselves into an ordered structure,
is of growing interest as a new paradigm in creating micro- and
nanoscale structures and functional systems and subsystems.

This novel
approach of making nano- and microstructures and devices is expected to
have numerous applications in electronics, optics and biomedical
applications.

Once Singamaneni and his research team, including Abdennour Abbas, PhD, a former postdoctoral researcher at Washington University, Andrew Brimer, a senior undergraduate majoring in mechanical engineering, and Limei Tian, a fourth-year graduate student, saw that these molecules had become microtubes, they set out to find out how.

To do so, they spent about six months investigating the process at various length scales (nano to micro) using various microscopy and spectroscopy techniques.

The results were published in the journal Small.

“What we showed was that we can actually watch the self-assembly of small molecules across multiple length scales, and for the first time, stitched these length scales to show the complete picture,” Singamaneni says. “This hierarchical self-organization of molecular building blocks is unprecedented since it is initiated from a single molecular crystal and is driven by vesicular dynamics in water.”

The team used small molecules p-aminothiophenol (p-ATP) or p-aminophenyl disulfide added to water with a small amount of ethanol. The molecules first assembled into nanovesicles then into microvesicles and eventually into centimeter-long microtubules. The vesicles stick onto the surface of the tube, walk along the surface and attach themselves, causing the tube to grow longer and wider. The entire process takes mere seconds, with the growth rate of 20 microns per second.

http://youtu.be/vo_S_9XfFfEA team of researchers at Washington University in St. Louis, headed by Srikanth Singamaneni, PhD, assistant professor of mechanical engineering & materials science, unexpectedly found the mechanism by which tiny single molecules spontaneously grow into centimeter-long microtubes by leaving a dish for a different experiment in the refrigerator.

“While it was exciting to watch the self-assembly of these molecules, we are even more excited about the implications of the self-assembly of such small molecules,” Singamaneni says. “This mechanism can be used to load the vesicles with the desired macromolecules, such as proteins, antibodies or antibiotics, for example, and build microtubes with a biological function.”

“We hope that once we can co-assemble some functional nanostructures along with these small molecules, then these molecular assemblies can have applications in biological sensors and chemical sensors,” Singamaneni says.

# # #

Abbas A, Brimer A, Tian L, d’Avignon D, Hameed A, Vittal J, Singamaneni S. “Vesicle-Mediated Growth of Tubular Branches and Centimeter-Long Microtubes from a Single Molecule.” Small. Early online publication Dec. 16, 2012.

Funding for this research was provided by the U.S. Army Research Office and Army Research Laboratory.