Characterizing the ‘arrow of time’ in open quantum systems

Characterizing the ‘arrow of time’ in open quantum systems

Even in the strange world of open quantum systems, the arrow of time points steadily forward — most of the time. A video details new experiments conducted at Washington University in St. Louis that compare the forward and reverse trajectories of superconducting circuits called qubits, and find that they largely tend to follow the second law of thermodynamics. The research is published July 9 in the journal Physical Review Letters.
Bison overlooked in domestication of grain crops

Bison overlooked in domestication of grain crops

As ecosystem engineers, bison have been hiding in plain sight for the past 40 years, since archaeologists first discovered that several native plants were domesticated in eastern North America. New research by Natalie Mueller, assistant professor of anthropology in Arts & Sciences, explains the connection, published July 8 in Nature Plants.
The fractal brain, from a single neuron’s perspective

The fractal brain, from a single neuron’s perspective

Physicists studying the brain at Washington University in St. Louis have shown how measuring signals from a single neuron may be as good as capturing information from many neurons at once using big, expensive arrays of electrodes. The new work continues the discussion about how the brain seems to function in a “critical” state. The research was reported in the Journal of Neuroscience.
Older Stories