Microbiology needs more math

Mikhail Tikhonov, assistant professor of physics in Arts & Sciences

 

The only thing more mind-bending than Einstein’s laws of general relativity is the fact that we managed to discover them—and use them. The GPS technology allowing your smartphone to pinpoint your position within a few feet relies on an exquisitely precise understanding of how the very flow of time is influenced by the reduced gravity in an orbiting satellite. And if these laws defy all common sense—too bad for our common sense.

Our intuition comes from throwing centimeter-sized rocks and falling from meter-sized trees. There is no reason it should apply at scales of which we have no direct sensory experience. Thankfully, we learned to use mathematics to extend our imagination. The relativity theory obeyed by galaxies and the laws of quantum mechanics obeyed by elementary particles are both profoundly unintuitive—and this should come as no surprise.

Why, then, wouldn’t the same logic apply to cell biology and microbial ecology? The past century has seen remarkable biological discoveries, but once we are in possession of these data, biology at microscopic scales makes perfect intuitive sense. One gene activates another, one species competes with another, the fit live, the unfit die. How did we get so lucky?

What seems like luck is probably a lack of knowledge—and an incredibly exciting opportunity. The data generated by the booming field of microbiome research contains many hints that our familiar assumptions might in fact be wrong at the scale of microbial life. Microbiology might well be at the brink of revolutionizing how we think about living matter. For this, we need theory.

Read the full piece at The Scientist.